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Learning and Representation in 
, Connectionist Models 

Terrence J. Sej nowski and 
Charles R. Rosenberg 

Expert performance is characterized by speed and effortlessness, but 
this fluency requires long hours of effortful practice. We are all ex- 
perts at reading and communicating with language. We forget how 
long it took to acquire these skills because we are now so good at 
them and we continue to practice every day. As performance on a 
difficult task becomes more automatic, it also becomes more inacces- 
sible to conscious scrutiny. The acquisition of skilled performance by 
practice is more difficult to study and is not as well understood as 
memory for specific facts (Anderson 1982; Norman 1982; Squire 1986, 
Tulving 1985). 

In connectionist models information is represented as patterns of 
activity in a large number of simple processing units. Memory and 
processing are closely intertwined in a network. Information can be 
stored by changing the connection strengths or weights on the links 
between the processing units. By studying the properties of relatively 
simple connectionist models, researchers may be able to gain insights 

r into the different ways information processing is organized in the 
nervous system. 

The earliest network models of associative memory were based on 
correlations between input and output patterns of activity in linear 
processing units (Hinton and Anderson 1981). These models have 
several features that make them attractive: The synaptic strengths are 
computed from information adailable locally at each synapse in a 
single trial; the information is distributed in a large number of connec- 
tion strengths; the recall of stored information is associative; and the 

i network can generalize to new input patterns that are similar to 
stored patterns. There are also severe limitations with this class of 
linear associative matrix models, including interference between 
stored items, especially between ones that are related, and inability to 
make decisions that are contingent on several inputs. New network 
models and network learning algorithms have been introduced re- 
cently that overcome some of the shortcomings of the associative 
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matrix models of memory. These learning algorithms require many 
training examples to create the internal representations needed to 
perform a task skillfully and to generalize properly, which makes this 
type of learning a candidate model for skill acquisition. 

4.1 Neural Network Models of Learning 

Organizing Principles 

Neural Networks Neurons are highly specialized processing units. 
Their relatively slow processing time is compensated for by their large 
number and high connectivity. There are many types of neurons that 
have highly specific patterns of connectivity. Some are primarily in- 
hibitory; others are primarily excitatory. Unfortunately the detailed 
patterns of connectivity in the cerebral cortex have not yet been deter- 
mined. Processing within neurons can be complex, although within 
the basic limitations on speed and accuracy imposed by the biophys- 
ical properties of ions and membranes. The dendrites in some 
neurons integrate incoming information through nonlinear spa- 
tiotemporal interactions between synapses. Synaptic strengths are 
variable on many time scales and can facilitate or habituate with activ- 
ity. The anatomical arrangements found in the cerebral cortex are 
outlined by Crick and Asanuma (1986), and the physiological proper- 
ties of cortical cells are summarized by Sejnowski (1986). 

The degree of neural detail that should be included in a model 
depends on the level under investigation. Biophysical properties may 
be crucial when modeling synaptic plasticity, but only a general rule 
for modification may be needed to model information storage at the 
circuit level. The style of processing and memory, such as the degree 
to which information is localized or distributed in the network, could 
well be general properties, whereas the actual codes used are proba- 
bly specific to the detailed circuits. If there are no general properties 
of cortical processing, then nothing short of detailed simulations of 
actual circuits will yield any insights, but there is hope that at least 
some general insights will be possible. Churchland (1986) has empha- 
sized the importance of computational network models in providing 
generalizations and guidance at both the neural and cognitive levels 
of description. 

As a first step toward understanding neural networks, we study 
network models constructed from simple processing units that have 
only the most basic properties of neurons and attempt to explore their 
computational capabilities: What are the possible ways to represent 
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sensory information in a collection of these units? What are the com- 
putational capabilities of different patterns of connectivity in the net- 
work? What computations can the network not perform? Even the 
simplest networks have complex behaviors that are not easy to de- 
scribe analytically, so much of the research is empirical and explor- 
atory. Also, there are so many architectures-the number of layers, 
feedback between layers, and local patterns of connectivity-that 
much guidance is needed from the general organization of cortical 
circuits, such as the columnar organization of the cerebral cortex and 
the hierarchical arrangements of cortical mappings (Adrian 1953; 
Hubel and Wiesel 1962; Mountcastle 1978; Allman et al. 1983; Van 
Essen and Maunsell 1983). Once we have gained some insight into 
the capabilities of these simple models, we can compare their per- 
formance with human performance on similar tasks and continue to 
improve the models. 

Representations In this chapter we present a network model that pro- 
nounces English text by transforming letters into elementary speech 
sounds, or phonemes. How many neurons are involved in the repre- 
sentation of letters and phonemes in the cerebral cortex? A related 
question is, How much overlap is there between the populations of 
neurons? To be more specific, when the word "cat" is pronounced, 
how localized is the representation for the production of the sound of 
the letter "a" and how different is it from the sound of the letter "a" 
in "gate"? Almost nothing is known about these issues in part be- 
cause recordings have not been made from cortical neurons in hu- 
mans. Two extreme possibilities are that each item is assigned to a 
single neuron, the so-called grandmother cell hypothesis (Barlow 

i 1972; Feldman 1986), or that a large number of the neurons in a brain 
area are used to represent an item, sometimes called the holographic 
hypothesis (Longuet-Higgins 1968; WiIlshaw 1981). Almost certainly 
the number of neurons involvyd is intermediate between these ex- 
tremes and depends on the item. 

The nature of internal representations in the transformations of 
letters to sounds can be studied by constructing network models that 
can perform the same task. The networks we present here are much 
too simple to serve as a literal model for the real neural networks in 
the human speech areas. However, we have been able to explore 
many interesting questions, including the properties of distributed 
internal representations and their consequences for learning strate- 
gies. Several general principles emerge based on the qualitative 
similarities between the performance of the network model and hu- 
man abilities. 
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Associative Matrix Models 
The goal of early models of memory (Steinbuch 1961; Anderson 1970; 
Kohonen 1970; Longuet-Higgins 1968) was to perform content- 
addressable recall of information represented as vectors. Given an 
input vector L,, and an associated output vector o,, the correlation 
matrix is defined as 

where E is the strength of the association. If ~b is identified with the 
rate of firing of the bth presynaptic element and o, is identified with 
the rate of firing of the ath postsynaptic element, then Kb can be 
computed after modifying the synapses between the input and out- 
put neurons according to the learning rule suggested by Hebb (1949), 
which states that the strength of the synapse should increase 
whenever there is a simultaneous presynaptic spike and a postsynap- 
tic spike. An important property of the correlation matrix is that it 
depends only on information that is available locally at a synapse. 
Nonlocal modification rules that require information from disparate 
parts of a network are more difficult to implement. 

Each component of the input and output vectors is identified with 
the firing rate of a neuron. The associative matrix model assumes that 
the output firing rate is a linear summation of all the weighted inputs. 
Given an input vector q b ,  the output vector +, is given by 

where n is the number of components of the input vector. By sub- 
stituting the expression for Kab in equation (4.2), we can rewrite the 
output vector as 

Thus the output of the network is proportional to the stored output 
vector and the amplitude depends on the inner product or overlap 
between the input vector and the stored input vector. 

Several pairs of inputs and outputs can be stored this way in the 
same network: 

A 

~ d b  = 1 ~ , o z ~ t .  
a = l  

(4.4) 

where o: and L; are A pairs of input and output vectors, respectively, 
and E, is the association strength of the ath pair. The output vector 

I can similarly be related to the stored vectors: 
A n 

However, as the number of stored vectors increases, so does the 
interference between them (Anderson 1970). Crosstalk between the 
stored input vectors can be minimized by orthogonalizing them 
(Kohonen 1984). 

Hebbian synaptic plasticity is probably the simplest local rule that 
I can be used for associative storage and recall of information. Evidence 

supporting Hebbian plasticity has recently been found in the hip- - 
pocampus (Kelso et al. 1986), and detailed correlation matrix models 
of the hippocampus are now being explored (Lynch 1986; Rolls 1986; 
McNaughton and Moms 1987). However, there are many other uses 
for Hebbian synaptic plasticity, such as plasticity during development 
(Linsker 1986), unsupervised learning (Sutton and Barto 1981; 
Tesauro 1986; Finkel and Edelman 1985), and rapid changes in the 
topology of a network (von der Malsburg and Bienenstock 1987). As a 
consequence, experimental evidence for Hebbian modification of syn- 

1 

aptic strength does not necessarily imply associative storage. 
Numerous variations have been proposed on the conditions for 

Hebbian plasticity (Levy et al. 1984). One problem with any synaptic 
modification rule that can only increase the strength of a synapse is 
the eventual saturation of the synaptic strength at its maximum 
value. Nonspecific decay is one solution to this problem. Sejnowski 
(1977a,b) suggested that specific decreases in the strength of a plastic 
plastic synapse should be considered and proposed that the change 
in strength of a plastic synapse should be proportional to the 

1 covariance between the presynaptic firing and the postsynaptic firing: 
A 

~b = 1 ~ ~ ( 0 :  - ~ ( 5  - is), 
a = l  

(4.6) 

where 6, is the average firing rake of the output neuron and ib is the 
average firing rate of the input neuron [see also Chauvet (1986)l. 
According to this modification rule, the strength of the synapse 
should increase if the firings of the presynaptic and postsynaptic 
elements are positively correlated, decrease if they are negatively 
correlated, and remain unchanged if they are uncorrelated. Evidence 
for a decrease in the strength of synapses in the hippocampus under 
the predicted conditions has recently been reported by Levy et al. 
(1983). Similar modification rules have also been suggested for plas- 
ticity during development (Cooper et al. 1979; Bienenstock et al. 
1982). 
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Improvements have recently been made to associative matrix mod- 
els by introducing feedback connections, so that they are auto- 
associative, and by making them nonlinear (Anderson and Mozer 
1981; Sejnowski 1981; Hopfield 1982; Kohonen 1984; Toulouse et al. 
1986). However, this class of models still has a severe computational 
limitation in that all the processing units in the network are con- 
strained by either the inputs or the outputs, so that there are no free 
units that could be used to form new internal representations. What 
representations should be used if the network is deeply buried in the 
association cortex far from sensory inputs and motor outputs? Some 
other principles must be specified for forming these internal repre- 
sentations. Nevertheless, given that good representations already ex- 
ist, the associative matrix model is still a viable one for the fast storage 
of novel events and items. 

Nonlinear Processing Units 
In the model neuron introduced by McCulloch and Pitts (1943), the 
output could only take the value 0 or 1, like the all-or-none nature of 
the action potential. This binary model does not take into account the 
graded responses of neurons, which can be expressed as an average 
rate of firing. There are two ways to make the output of the process- 
ing unit graded. First, the output of the processing unit can be made 
probabilistic, with a probability proportional to its average rate of 
firing. Second, the output of a processing unit can be made a real 
number between 0 and 1. Both of these possibilities are illustrated in 
this section. 

The output function of a more realistic model neuron is shown in 
figure 4.1. This function has a sigmoid shape: It monotonically in- 
creases with input; it is 0 if the input is negative; and it asymptotically 
approaches 1 as the input becomes large. This roughly describes the 
firing rate of a neuron as a function of its integrated input: If the input 
is below threshold, there is no output, the firing rate increases with 
the input, and it saturates at a maximum firing rate. The behavior of 
the network does not depend critically on the details of the sigmoid 
function, but the one we used is given by 

where si is the output of the ith unit and the total input Ei is 

where wij is the weight from the jth to the ith unit. The weights can 
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Neurons as Processors 

sum 

Figure 4.1 
(Left) Schematic model of a processing unit receiving inputs from other processing 
units. (Right) Transformation between summed inputs and output of a processing unit 
as given by equation'(4.7). 

have positive or negative real values, representing an excitatory or 
inhibitory influence. 

In addition to the weights connecting them, each unit also has a 
threshold. In some learning algorithms the thresholds can also vary. 
To make the notation uniform, we implemented the threshold as an 
ordinary weight from a special unit, called the true unit, that always 
has an output value of 1. This fixed bias acts like a threshold whose 

i value is the negative of the weight. 
The properties of the nonlinear processing units used here have 

some properties that make them similar to real neurons: (1) the inte- 
gration of diverse excitatory and inhibitory signals arriving from other 
units, although with low accuraq; (2) an output signal that is a non- 
linear transformation of the total integrated input, including a 
threshold; and (3) a complex pattern of interconnectivity. Many other 
properties of neurons are not taken into account but could be incor- 
porated into subsequent models. The goal here is to explore the pro- 

! cessing capabilities of the simplest classes of nonlinear networks, 
I 

particularly those properties that arise through the patterns of con- 
nections in the netwdrk. 

Nonlinear Networks with One Layer of Connect ions 
In a network of processing units a subset receives information from 
outside the network while another subset provides the output from 
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the network. Patterns of activity in the group of input units are trans- 
formed into patterns of activity in the output units by direct connec- 
tions and through connections with additional internal units that play 
the role of interneurons. In general, it is difficult to analyze the per- 
formance and computational capabilities of nonlinear network mod- 
els, but by making restrictions on the connectivity, it is possible to 
make progress. The small networks that we can study at present 
should be considered part of a larger system. 

When there are feedback connections in a network, the units may 
reverberate without settling down to a stable output. In some cases 
oscillations may be desirable, but otherwise special provisions must 
be made to suppress them. One method that has been thoroughly ex- 
plored is the use of symmetric connectivity. Networks with recip- 
rocal symmetric connections, first introduced by Hopfield (1982) in 
the context of binary-valued processing units, were the starting point 
for the study of learning algorithms in Boltzmann machines by 
Hinton and Sejnowski (1983). Another method, extensively studied 
by Grossberg (1976), is the use of lateral shunting inhibition. But 
it is easiest to avoid oscillations by not considering any feedback 
connections. 

In a feed-forward network there is no dynamic feedback so that 
information can flow only from the input layer to the output layer. 
The simplest class of feed-forward networks are ones that have no 
internal or "hidden" units. In this case each output unit acts indepen- 
dently in response to input patterns in its "receptive field," defined 
here as the group of input units that drives the output unit, in anal- 
ogy with the concept of a receptive field for sensory neurons. The 
output unit is most strongly driven by patterns of activity in its recep- 
tive field that are congruent to the excitatory connections and that 
avoid the inhibitory ones. 

A simple learning procedure exists for automatically determining 
the weights in a single-layer feed-forward network. It is an incremen- 
tal learning procedure that requires a teacher to provide the network 
with examples of typical input patterns and the correct outputs; with 
each example the weights in the network are slightly altered to im- 
prove the performance of the network. If a set of weights exists that 
can solve the classification problem, then convergence theorems 
guarantee that such a set of weights will be found. 

These learning procedures are error correcting in the sense that 
only information about the discrepancy between the desired outputs 
provided by the teacher and the actual output given by the network is 
used to update the weights. The LMS algorithm of Widrow and Hoff 
(1960) applies to units that have continuous-valued outputs, and the 

1 perceptron learning algorithm of Rosenblatt (1959) applies to binary- 
valued units. The LMS algorithm is described here. Define the differ- 
ence between the desired outputs s: and the actual outputs si as 

The LMS learning algorithm requires that the weight from input unit 
s, to the ith output unit should be altered by 

This is a gradient descent procedure because on each step the squared 
error averaged over all input patterns is reduced. 

There is an interesting relationship between this error-correcting 
procedure and the Rescorla-Wagner theory for classical conditioning. 
Rescorla and Wagner (1972) state that "organisms only learn when 
events violate their expectations. Certain expectations are built up 
about the events following a stimulus complex; expectations initiated 
by the complex and its component stimuli are then only modified 
when consequent events disagree with the composite expectationf1 
(p. 75). Thus it is the difference between the expected and the actual 

I outcomes that 'determines whether strengths are modified. Sutton 
and Barto (1981) have shown that the mathematical formalism in- 
troduced by Rescorla and Wagner is identical with the Widrow-Hoff 
LMS algorithm. 

Recently Gluck and Bower (1986, 1987) have applied the LMS al- 
gorithm to category learning in humans. In three experiments sub- 
jects learned to categorize diseases in hypothetical patients from 
patterns of symptoms. The adaptive network model was a better 
predictor of human performance than probability matching, exemplar 
retrieval, or simple prototype matching. The model correctly pre- 

I 

dicted a counterintuitive phenomenon called base-rate neglect that 
has been frequently observed in studies of likelihood judgments: 
When one disease is far more likely than another, the model predicts 
that subjects will overestimate the diagnostic value of the more valid 
symptom for the rare disease. Thus the subjects consistently over- 
estimated the degree to which evidence that was representative or 
typical of a rare event was actually predictive of it (Kahneman 

, and Tversky 1972). 

I 
The patterns that can be correctly classified with a one-layer net- 

work are limited to those that are geometrically equivalent to regions 
of a vector space bounded by a plane (Minsky and Papert 1969). 
Single-layer networks are severely limited in the difficulty of the 
problem that they can solve, but this deficiency can be partially over- 
come by preprocessing the inputs through a layer of units that serve 
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as feature detectors so that the information needed to solve the prob- 
lem is made explicitly available (Rosenblatt 1959; Gamba et al. 1961). 
The required features may be different for each problem. 

An impressive example of how clever coding can turn a difficult 
problem into one that can be learned in one layer of weights is the 
study of verb learning by Rumelhart and McClelland (1986a). The 
goal of their network was to take as input English verbs and produce 
as output their past tenses. Their coding scheme decomposed the 
ordered string of letters in words into unordered triples. These triples 
in turn were coded into patterns on 460 input units. The same coding 
was used for the 460 output units, each of which received a connec- 
tion from all the input units, making a total of 231,600 weights. Their 
network was equivalent to a single-layer Boltzmann machine, which 
we discuss in the next section. 

One problem with single-layer networks is the lack of internal de- 
grees of freedom. Can the learning algorithm be generalized to net- 
works with more than one layer of weights? If so, then the need to 
hand-code the features for each problem would be alleviated and 
much more difficult problems could be solved by the same type of 
supervised learning paradigm. It had been thought for many years 
that such a learning algorithm was not possible for multilayered net- 
works [Minsky and Papert (1969, p. 232); see also Arbib (1987)l. 

Nonlinear Network Models with Hidden Units 
A network without hidden units is limited in what it can learn. Add- 
ing a single intermediate layer of hidden units suffices to perform any 
desired transformation. Consider, for example, the case of binary 
units. If there are N input units, then there are 2N possible input 
patterns. Dedicate one hidden unit to each of these input patterns 
and connect it to the input units in the following way: Set the weight 
from an input unit to the hidden unit to + 1 if the input unit is on or to 
- 1 if the input unit is off, and set the threshold of the hidden unit to 
the total number of input units that are on. For any given input 
pattern only one hidden unit will be activated, which in turn can 
activate any desired output pattern. In this way any problem can be 
solved, but at the expense of a huge number of hidden units that 
grows exponentially with the number of input units. With continu- 
ous-valued units the analysis is more difficult, but similar theorems 
can be proved (Kolmogorov 1957; Palm 1978, 1979). 

In practice, only a small subset of all possible transformations are 
ever needed and only a small number of hidden units are available. 
The challenge is to find the appropriate set of hidden units for each 
problem. One possibility is to have the network discover the proper 
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! 
features without supervision from a teacher. There are several 
unsupervised learning procedures that can automatically model 
structure from the environment (Kohonen 1984; Grossberg 1976; 
Rumelhart and Zipser 1985; Pearlmutter afid Hinton 1986). One prob- 
lem with unsupervised learning is that all the hidden units may dis- 
cover the same features. Competition through mutual inhibition is 
one solution that enforces diversity (Feldman 1982), and others have 

I been suggested (Reggia 1985; Baum et al. 1987). Another problem is 
that not all the structure in the inputs may be relevant to the solution 

I of a particular problem. Feedback of information from the environ- 
ment about the desired performance is needed. 

One class of supervised learning algorithms for multilayered net- 
works uses reinforcement signals from a teacher that tell the network 
whether or not the output is correct (Sutton and Barto 1981; Barto 
1985; Klopf 1986; Tesauro 1986; Gluck and Thompson 1986). This is 
the minimum ar;lount of information needed to help direct the hid- 
den units toward good features, but there is so little information that 
the networks improve slowly and hesitatingly. Recently a new class 

i of algorithms was discovered that directly generalizes the class of 
error-correcting learning procedures to multilayered networks. Two 
examples are reviewed here: the Boltzmann machine and back- 
propagation. [See also Arbib (1987) for a review that includes a valu- 
able historical perspective on earlier work.] 

Bolfzmann Machines Hinton and Sejnowski (1983, 1986) introduced a 
stochastic network architecture, called the Boltzmann machine, for 
solving optimization problems (Marr and Poggio 1976; Ballard et al. 
1983; Hopfield and Tank 1986). The processing units in a Boltzmann 
machine are binary, like the perceptron, but they are updated prob- 
abilistically using the same output function in figure 4.1. As a conse- 
quence, the internal state of a Boltzmann machine fluctuates even for 
a constant input pattern. The amoynt of fluctuation is controlled by a 
parameter that is analogous to the temperature of a thermodynamic 
system. Fluctuations allow the system to escape from local traps into 
which it would get stuck if there were no noise in the system. An- 
other important difference with the perceptron is that all the units in a 
Boltzmann machine are symmetrically connected; this allows an "en- 

i ergy" to be defined for the network and ensures that the network will 
relax to an equilibrium state that minimizes the energy (Hopfield 
1982). Smolensky (1983,1986) has studied the same architecture using 
"harmony," which is the negative of energy, as the global function. 

The Boltzmann machine has been applied to a number of constraint 
satisfaction problems in vision, such as figure-ground separation in 
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image analysis (Sejnowski and Hinton 1986; Kienker et al. 1986), and 
generalizations have been applied to image restoration (Geman and 
Geman 1984) and binocular depth perception (Divko and Schulten 
1986). Riley and Smolensky (1984) have used harmony theory to 
study problem solving. The number of times that the network must 
be updated to reach an optimal solution can be very large when the 
units are stochastic; an alternative architecture that converges more 
quickly, although not necessarily to the optimal solution, is based on 
continuous-valued units (Hopfield 1984; Hopfield and Tank 1985, 
1986). This deterministic system is like a "mean field" approximation 
to the stochastic system. 

Boltzmann machines have an interesting learning algorithm that 
allows "energy landscapes" to be created through training by ex- 
ample. Learning in a Boltzmann machine has two phases. In the 
training phase a binary input pattern is imposed on the input group 
and on the correct binary output pattern. The system is allowed to 
relax to equilibrium at a fixed "temperature" while the inputs and 
outputs are held fixed. At equilibrium the average fraction of the time 
a pair of units is on together, the co-occurrence probability p;, is 
computed for each connection. In the test phase the same procedure 
is followed with only the input units clamped, and the average co- 
occurrence probabilities p; are again computed. The weights are then 
updated according to 

Awij = ~ ( p ;  - p;), (4.11) 

where the parameter E controls the rate of learning. A co-occurrence 
probability is related to the correlation between the firing or activation 
of the presynaptic and postsynaptic units and can be implemented by 
a Hebb synapse. In the second phase, however, the change in the 
synaptic strengths is anti-Hebbian because it must decrease with in- 
creasing correlation. Notice that this procedure is also error correct- 
ing, for no change will be made to the weight if the two probabilities 
are the same. The perceptron learning procedure follows as a special 
case of the Boltzmann learning algorithm when there are no hidden 
units and the probability function reduces to a step function. 

The Boltzmann learning algorithm has been applied to a variety of 
problems, such as bandwidth compression (Ackley et al. 1985), the 
learning of symmetry groups (Sejnowski et al. 1986), and speech 
recognition (Prager et al. 1986). One of the practical limitations of 
simulating a Boltzmann machine on a conventional digital computer 
is the excessive time required to come to equilibrium and collect sta- 
tistics. A special-purpose VLSI chip is being designed to speed up the 
learning (Alspector and Allen 1986). 
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I Back-Propagation Another error-correcting learning procedure, in- 
troduced by Rumelhart et al. (1986) and called error back- 
propagation, generalizes the Widrow-Hoff algorithm. The network is 
a multilayered feed-forward architecture that uses the same process- 
ing units described in equation (4.7) and figure 4.1. There may be 
direct connections between the input layer and the output layer as 
well as through the hidden units. A superscript is used to denote the 
layer for each unit, so that sp) is the ith unit on the nth layer. The final 
output layer is designated the Nth layer. 

i The first step is to compute the output of the network for a given 
input. The goal of the learning procedure is to minimize the average 
squared error between the computed values of the output units and 
the correct pattern st provided by a teacher: 

where is the number of units in the output layer. This is accom- 
plished by first computing the error gradient on the output layer, 

and then propagating it backward through the network layer by 
layer: 

where Pf(Ei)  is the first derivative of the function P(Ei) in figure 4.1. 
These gradients are the directions that each weight should be al- 

tered to reduce the error for a particular item. To reduce the average 
error for all the input patterns, the gradients must be averaged over 
all the training patterns before updating the weights. In practice, it is 
sufficient to average over several inputs before updating the weights. 
Another method is to compute a ynning average of the gradient with 
an exponentially decaying filter: 

where a is a smoothing parameter (typically 0.9) and u is the number 
of input patterns presented. The smoothed weight gradients Aw&?(u) 
can then be used to update the weights: 

where t is the number of weight updates and E is the learning rate 
(typically 1.0). The error signal is back-propagated only when the 
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difference between the actual and the desired values of the outputs is 
greater than a margin of 0.1. This ensures that the network does not 
overlearn on inputs that it is already getting correct. This learning 
algorithm can be generalized to networks with feedback connections 
and multiplicative connections (Rumelhart et al. 1986), but these ex- 
tensions will not be discussed further. 

The definitions of the learning parameters here are somewhat dif- 
ferent from those in Rumelhart et al. (1986). In the original algorithm 
E is used rather than (1 - a )  in equation (4.15). Our parameter a is 
used to smooth the gradient in a way that is independent of the 
learning rate E, which appears only in the weight update [equation 
(4.16)]. Our averaging procedure also makes it unnecessary to scale 
the learning rate by the number of presentations per weight update. 

The back-propagation learning algorithm has been applied to sev- 
eral problems, including knowledge representation in semantic net- 
works (Hinton 1986; Rumelhart 1986), bandwidth compression by 
dimensionality reduction (Saund 1986; Zipser 1986), speech recogni- 
tion (Ellman and Zipser 1986; Watrous et al. 1986), conversion of text 
to speech (Sejnowski and Rosenberg 1987), and backgammon 
(Tesauro and Sejnowski 1988). In the next section we give a detailed 
description of how back-propagation was applied to the problem of 
converting English text to speech. 

Biological Plausibility Neither the Boltzmann machine nor the error 
back-propagation scheme is meant as a literal model of real neural 
circuitry. They are also quite different from each other-the Boltz- 
mann machine uses binary stochastic units in a symmetric network, 
whereas back-propagation uses real-valued deterministic units in 
a feed-forward network-but both architectures have learning algo- 
rithms that depend on gradient descent in the space of weights, 
which can have high dimensionality. The class of gradient descent 
algorithms for learning in large networks may have general proper- 
ties that are already present in the simplest members. Other more 
elaborate gradient descent learning algorithms, which are more bio- 
logically plausible, are also being explored (Parker !986; Le Cun 
1985). 

The network models we review in this section make a number of 
assumptions that should be critically examined. First, the networks 
are based on a highly idealized version of real neurons, and many 
constraints concerning patterns of connectivity found in the nervous 
system are not incorporated into the models. Second, human learn- 
ing is often imitative rather than instructive, so that children, for 

example, are exposed to many positive examples and are not always 
corrected when they make mistakes. 

At this early stage in exploring the capabilities of network models at 
the psychological level, it is more helpful to discover the general 
properties of networks before studying the properties of highly spe- 
cialized networks. The network models are sufficiently general that 
they can be applied to several different levels of investigation. A 
processing unit, for example, can be identified with a group of 
neurons rather than a single neuron and the activity level of the unit 
identified with the average firing rate within the group. Also, the 
"teacher" in a supervised learning algorithm should not be taken too 
literally: For example, one brain area can serve as the teacher and 
provide the information needed to train another brain area. In the 
next section we consider the problem of pronouncing English text. 
The teacher can be a part of the brain that already contains the correct 
pronunciation of words, and during the learning process the pronun- 
ciations become associated with the spellings of the words. Little is 
known about the neurophysiological basis of human language abil- 
ities, so a detailed comparison with real brain circuits is not yet 
possible. 

Thus the present network model should not be considered a neural 
model but rather a model system in which to explore issues of repre- 
sentation and learning in large populations of neurons. The general 
insights that are found can be used to explore more detailed brain 
models and may even help in analyzing recordings from neurons in 
the cerebral cortex. 

The problem of pronouncing written English text illustrates many of 
the features of skill acquisition and expert performance. In reading 
aloud, we first recognize letters qnd words from images on our reti- 
nas. Several words can be processed in one fixation so that a sig- 
nificant amount of parallel processing must be involved. At some 
point in the central nervous system the information encoded visually 
is transformed into articulatory information about how to produce the 
correct speech sounds. Finally, intricate patterns of activity occur in 
the motor neurons that innervate muscles in the larynx and mouth, 
and sounds are produced. The key step that we are concerned with in 
this section is the transformation between the highest sensory repre- 
sentations of the letters and the earliest articulatory representations of 
the phonemes. 
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English pronunciation has been extensively studied by linguists, 
and much is known about the correspondence between letters and 
phonemes (Venezky 1970). English is a particularly difficult language 
to master because of its irregular orthography. For example, the "a" 
in almost all words ending in "ave," such as "brave" and "gave," is a 
long vowel, but not in "have," and there are some words such as 
"read" that can vary in pronunciation. The problem of reconciling 
rules and exceptions in converting text to speech shares some char- 
acteristics with difficult problems in artificial intelligence that have 
traditionally been approached with rule-based knowledge repre- 
sentations, such as natural language translation (Haas 1970). 

In this section we. describe a network that learns to pronounce 
English text. The model, which we call NETtalk, demonstrates that 
even a small network can capture a significant fraction of the regu- 
larities in English pronunciation as well as absorb many of the irregu- 
larities. In commercial systems such as DECtalk (Digital Equipment 
Corporation), a look-up table (of about a million bits) is used to store 
the phonetic transcription of the most common words, and pho- 
nological rules are applied to words that are not in the dictionary 
(Allen 1987; Matt 1980). The result is a string of phonemes that can 
then be converted to sounds with digital speech synthesis. NETtalk is 
designed to perform the task of converting strings of letters to strings 
of phonemes. Earlier work on NETtalk was described by Sejnowski 
and Rosenberg (1986, 1987). 

Network Architecture 
NETtalk is a feed-forward network that uses the back-propagation 
learning algorithm. We have also used the Boltzmann learning al- 
gorithm on this problem, but the results are not reported here. The 
network is hierarchically arranged into three layers of units: an input 
layer, an output layer, and an intermediate, or "hidden," layer, as 
illustrated in figure 4.2. Information flows through the network from 
bottom to top. First, the letter units at the base are clamped; then the 
states of the hidden units are determined by equations (4.2) and (4.3); 
finally, the states of the phoneme units at the top are determined. 
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TEACHER 
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Hidden Units 

I n ~ u t  Units OXXI 0333 0333 OC03 0333 KO3 OXO 

a c a  - 1  
i Figure 4.2 
! Schematic drawing of the NETtalk network architecture. Window of letters in an En- 
i glish text is fed to an array of 203 input units, as shown on the bottom of the pyramid, 

with 7 groups of 29 units in each group. Information from these units is transformed by 
an intermediate layer of 80 hidden units. Each hidden unit receives inputs from all the 
input units on the bottom layer and in turn sends its output to all 26 units in the output 
layer. The output pattern of activity is then used to choose the closest phoneme and 
stress corresponding to the middle letter. During learning, a teacher provides the 
correct output vector and the error is used to update the weights in the network. An 
example of an input string of letters from a training text is shown below the input 
groups, and the output phoneme for the middle letter is shown above the output layer. 
There are 309 units and 18,629 weights in the network, including a variable threshold 
for each unit. 

the center letter) provide a partial context for this decision. The text is 
stepped through the window letter by letter. At each step the net- 
work computes a phoneme, and after each word the weights are 
adjusted according to how closely the computed pronunciation 
matched the correct one. 

We chose a window with seven letters for two reasons. First, 
Lucassen and Mercer (1984) have shown that a significant amount of 
the information needed to pronounce a letter correctly is contributed 
by the nearby letters (figure 4.3). Second, we were limited by our 
computational resources to explqring small networks, and it proved 
possible to train a network with a seven-letter window in a few days. 
The limited size of the window also meant that some important non- 
local information about pronunciation and stress could not be prop- 
erly taken into account by our model (Church 1985). The main Representations of Letters and Phonemes The standard network has 
of our model is to explore the basic principles of distributed informa- seven groups of units in the input layer, and one group of units in 
tion coding in a real-world domain rather than to achieve perfect each of the other two layers. Each input group encodes one letter of 
performance. the input text, so that strings of seven letters are presented to the 

The letters and phonemes are represented in different ways. The input units at any one time. The desired output of the network is the 
letters are represented locally within each group by twenty-nine dedi- correct phoneme, associated with the center, or fourth, letter of this 
cated units, one for each letter of the alphabet plus an additional three seven-letter "window." The other six letters (three on either side of 
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Information Gain at Several Letter Positions 

-4 -2 0 2 4 

Letter Posilion 

" 
Mutual information provided by neighboring letters and the correct pronunciation of 
the center letter as a function of distance from the center letter. Data from Lucassen and 
Mercer (1984). 

units to  encode punctuation and  word boundaries. Only one unit in  
each input group is active for a given input. The phonemes, in con- 
trast, are represented in terms of twenty-one articulatory features, 
such a s  point of articulation, voicing, and  vowel height, as  sum- 
marized in table 4.1. Five additional units encode stress and  syllable 
boundaries, making twenty-six output units. This is a distributed 
representation because each output unit participates in  the encoding 
of several phonemes (Hinton et  al. 1986). 

The hidden units neither receive direct input nor have direct output 
but are used by the network to  form internal representations appro- 
priate for mapping letters to phonemes. The goal of the learning 
algorithm is to search effectively the space of all possible weights for a 
network that performs the mapping. 

Learning We used two texts to train the network: phonetic tran- 
scriptions from the informal continuous speech of a child (Carterette 
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Table 4.1 
Articulatory representation of phonemes and punctuations 
Symbola Phonemeb Articulatory featuresC 
la1 
Ibl 
lcl 
Id1 
/el 
If1 

/g/ 
Ihl 
lil 
Ikl 
I11 
Iml 
In1 
lo1 

/PI 
Irl 
Is1 
It1 
lul 
Ivl 
lwl 
1x1 

lyl 
121 
I A1 
ICl 
ID/ 
/El 
lGl 
/I/ 
IJI 
IKl 

ILI 
/MI 
IN1 
101 
/Q/ 
IRl 
IS1 

father 
bet 
bought 
debt 
bake 
fin 
guess 
head 
Pete 
Ken 
let 
met 
net 
bout 

Pet 
red 
sit 
test 
lute 
vest 
wet 
about 

Yet 
zoo 
bite 
chin 
this 
bet 
sing 
bit 

gin 
sexual 

bottle 
absym 
button 

boy 
quest 
bird 
shin 

Low, Tensed, Central2 
Voiced, Labial, Stop 
Medium, Velar 
Voiced, Alveolar, Stop 
Medium, Tensed, Front2 
Unvoiced, Labial, Fricative 
Voiced, Velar, Stop 
Unvoiced, Glottal, Glide 
High, Tensed, Frontl 
Unvoiced, Velar, Stop 
Voiced, Dental, Liquid 
Voiced, Labial, Nasal 
Voiced, Alveolar, Nasal 
Medium, Tensed, Back;! 
Unvoiced, Labial, Stop 
Voiced, Palatal, Liquid 
Unvoiced, Alveolar, Fricative 
Unvoiced, Alveolar, Stop 
High, Tensed, Back2 
Voiced, Labial, Fricative 
Voiced, Labial, Glide 
Medium, Central2 
Voiced, Palatal, Glide 
Voiced, Alveolar, Fricative 
Medium, Tensed, Front2 + Centrall 
Unvoiced, Palatal, Affricative 
Voiced, Dental, Fricative 
Medium, Frontl + Front2 
Voiced, Velirr, Nasal 
High, ~ront ' l  
Voiced, Velar, Nasal 
Unvoiced, Palatal, Fricative + Velar, Affricative 
(Compound: Ikl + 1st) 
Voiced, Alveolar, Liquid 
Voiced, Dental, Nasal 
Voiced, Palatal, Nasal 
Medium, Tensed, Centrall + Central2 
Voiced, Labial + Velar, Affricative, Stop 
Voiced, Velar, Liquid 
Unvoiced, Palatal, Fricative 
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Table 4.1 (Continued) 

Symbola Phonemeb Articulatory featuresc 

thin 
book 
bout 
excess 

cute 
leisure 
bat 
Nazi 

examine 

one 

logic 
but 
Continuation 
Word boundary 
Period 
Syllable boundary 
Syllable boundary 
Primary stress 
Secondary stress 
Tertiary stress 

Unvoiced, Dental, Fricative 
High, Backl 
High + Medium, Tensed, Central2 + Backl 
Unvoiced, Affricative, Front2 + Centrall 
(Compound: Ikl + Is/) 
High, Tensed, Frontl + Front2 + Centrall 
Voiced, Palatal, Fricative 
Low, Front2 
Unvoiced, Labial + Dental, Affricative 
(Compound: It1 + Is/) 
Voiced, Palatal, + Velar, Affricative 
(Compound: Igl + 121) 
Voiced, Glide, Frontl + Low, Centrall 
(Compound: Iwl + 1-1) 
High, Frontl + Front2 
Low, Centrall 
Silent, Elide 
Pause, Elide 
Pause, Full Stop 
Right 
Left 
Strong, weak 
Strong 
Weak 

Word boundary Right, left, boundary 
a. The symbols for phonemes are a superset of ARPAbet and are associated 
with the sound of the italicized part of the adjacent word. 
b. Compound phonemes were introduced when a single letter was associ- 
ated with more than one primary phoneme. 
c. Two or more of the following twenty-one articulatory feature units were 
used to represent each phoneme and punctuation. Position in mouth: Labial 
= Frontl, Dental = Front2, Alveolar = Centrall, Palatal = Central2, Velar 
= Backl, Glottal = Back2. Phoneme type: Stop, Nasal, Fricative, Affricative, 
Glide, Liquid, Voiced, Tensed. Vowel height: High, Medium, Low. Punctua- 
tion: Silent, Elide, Pause, Full stop. The continuation symbol was used when 
a letter is silent. Stress and syllable boundaries were represented with combi- 
nations of five additional units, as shown at the end of this table. Stress was 
associated with vowels, and arrows were associated with letters. The arrows 
point toward the stress and change direction at syllable boundaries. Thus the 
stress assignments for "atmosphere" are 1 < > 0 >>> 2 <<. The phoneme 
and stress assignments were chosen independently. 

and Jones 1974) and Merriam-Webster's Pocket Dictionary (1974). The 
corresponding letters and phonemes were aligned, and a special sym- 
bol for continuation, -, was inserted whenever a letter is silent or 
part of a graphemic letter combination, as in the conversion from the . 
string of letters "phone" to the string of phonemes If-on-/ (see table 
4.1). Two procedures were used to move the text through the win- 
dow of seven input groups. For the corpus of informal continuous 
speech the text was processed in order with word boundary symbols 
between the words. Several words or word fragments could be 
within the window at the same time. For the dictionary the words 
were placed in random order and moved through the window 
individually. 

The weights were incrementally adjusted during the training ac- 
cording to the discrepancy between the desired and the actual values 
of the output units. For each phoneme this error was "back- 
propagated" from the output to the input layer using the learning 
algorithm introduced by Rumelhart et al. (1986) and described in the 
previous section. Each weight in the network was adjusted after 
every word to minimize its contribution to the total mean squared 
error between the desired and the actual output. The weights in the 
network were always initialized to small random values uniformly 
distributed between -0.3 and 0.3; this was necessary to differentiate 
the hidden units. 

A simulator was written in the C programming language for 
configuring a network with arbitrary connectivity, training it on a 
corpus and collecting statistics on its performance. A network of 
10,000 weights had a throughput during learning of about 2 letters1 
sec on a VAX 780 FPA. After every presentation of an input the inner 
product of the output vector was computed with the codes for each of 
the phonemes. The phoneme that made the smallest angle with the 
output was chosen as the /'best guess." Slightly better performance 
was achieved by choosing the phoneme whose representation had 
the smallest Euclidean distance' from the output vector, but these 
results are not reported here. All performance figures reported in the 
next section refer to the percentage of correct phonemes chosen by 
the network. The performance was also assayed by "playing" the 
output string of phonemes and stresses through DECtalk, bypassing 
the part of the machine that converts letters to phonemes. 

Performance 

Continuous lnformal Speech Carterette and Jones (1974) provide pho- 
netic transcriptions of children and adults that were taped during 
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95 - Relearning After Damage 
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Figure 4.5 
Damage to the network and recovery from damage. (a) Performance of a network as a 
function of the amount of damage to the weights. The network had been previously 
trained on 50 passes through the corpus of continuous informal speech. The weights 
were then damaged by adding a random component to each weight uniformly distrib- 
uted on the interval [-d, dl, where d is the amount of damage plotted on the abscissa. 
The performance shown is the average of at least two disrupted networks for each 
value of d. For d = 1.2, 22 disrupted networks were tested to obtain a standard 
deviation of 6%. The average absolute value of the weights in the network was I u~ I = 
0.77, and the standard deviation was cr = 1.2. There was little degradation of the best 
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learning rate scale with the number of hidden units. With no hidden 
units the performance rises quickly and saturates at 82%, as shown in 
figure 4.6a. This represents the part of the mapping that can be ac- 
complished by linearly separable partitioning of the input space 
(Minsky and Papert 1969). Hidden units allow more contextual in- 
fluence by recognizing higher-order features among combinations of 
input units. 

The rate of learning and asymptotic performance increases with the 
number of hidden units, as shown in figure 4.6a. The best perfor- 
mance achieved with 120 hidden units was 98%, significantly better 
than the performance achieved with continuous informal speech, 
which was more difficult because of the variability in real-world 
speech. Different letter-to-sound correspondences are learned at dif- 
ferent rates; two examples are shown in figure 4.6b. The ability of a 
network to generalize was tested on a large dictionary. Using weights 
from a network with 120 hidden units trained on the 1,000 words, the 
average performance of the network on the dictionary of 20,012 
words was 77%. With continued learning the performance reached 
85% at the end of the first pass through the dictionary, indicating a 
significant improvement in generalization. Following five training 
passes through the dictionary, the performance increased to 90%. 

The number of input groups was varied from three to eleven. Both 
the speed of learning and the asymptotic level of performance im- 
proved with the size of the window. The learning curve with 11 input 
groups and 80 hidden units was about 7% higher than a network with 
7 input groups and 80 hidden units up to about 25,000 words of 
training and reached 97.5% at 55,000 words, compared with 95% for 
the network with 7 input groups. 

Adding an extra layer of hidden units also improved the perfor- 
mance somewhat. A network with 7 input groups and two layers of 
80 hidden units each was trained first on the 1,000-word dictionary. 
Its performance after 55,000 words of training was 97%, and its 
generalization was 80% on the 2b,012-word dictionary without addi- 
tional training and 87% after the first pass through the dictionary with 

guesses until d = 0.5, and the falloff with increasing damage was gentle. @) Retraining 
of a damaged network compared with the original leaming curve starting from the 
same level of performance. The network was damaged with d = 1.2 and was retrained 
using the same corpus and leaning parameters that were used to train it. There is a 
rapid recovery phase during the first pass through the network, followed by a slower 
healing process similar in time course to the later stages of the original training. These 
two phases can be accounted for by the shape of the error metric in weight space, 
which typically has deep ravines (Hinton and Sejnowski 1986). 
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Figure 4.6 
(a)~earnin~ curves for training on a corpus of the 1,000 most common words in English 
using different numbers of hidden units, as indicated for each curve. The percentage of 
phonemes correctly assigned by the network is shown as a function of the number of 
training words. For the case with no hidden units, the input units were directly con- 
nected to the output units. (b) Performance during learning of two representative 
phonological rules, the hard and soft pronunciation of the letter "c." Note that the soft 
"c" takes longer to learn but eventually achieves perfect accuracy. The hard "c" occurs 
about twice as often as the soft "c" in the training corpus. children show a similar 
difficulty with learning to read words with the soft "c" (Venezky and Johnson, 1973). 
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training. The asymptotic performance after 218,000 words of training 
on the dictionary was 91%. Compared to the network with 120 hid- 
den units, which had about the same number of weights, the network 
with two layers of hidden units was better at generalization but about 
the same in absolute performance. 

Analysis of Hidden Units 
There are not enough hidden units in even the largest network that 
we studied to memorize all the words in the dictionary. The standard 
network with 80 hidden units had 18,629 weights, including variable 
thresholds. if we allow 4 bits of accuracy for each weight, as indicated 
by the damage experiments, the total storage needed to define the 
network is about 10 kilobytes or 80,000 bits. In comparison, the 
20,012-word dictionary, including stress information, requires nearly 
2,000,000 bits of storage. This data compression is possible because of 
the redundancy in English pronunciation. By studying the patterns of 
activation among the hidden units, we were able to understand some 
of the coding methods that the network had discovered. 

The standard network used for analysis had 7 input groups and 80 
hidden units and'had been trained to 95% correct on 1,000 dictionary 
words. The levels of activation of the hidden units were examined for 
each letter of each word using the graphical representation shown in 
figure 4.7. On average, about 20% of the hidden units are highly 
activated for any given input, and most of the remaining hidden units 
have little or no activation. Thus the coding scheme cannot be de- 
scribed as either a local representation, which would activate only 
one or two units, or a "holographic" representation, in which all the 
hidden units participate to some extent. It is apparent, even without 
using statistical techniques, that many hidden units are highly ac- 
tivated only for certain letters or sounds or letter-to-sound correspon- 
dences. Some of the hidden units can be assigned unequivocal 
characterizations, such as one unit that responds only to vowels, but 
most of the units participate in dore than one regularity. 

To test the hypothesis that letter-to-sound correspondences are the 
primary organizing variable, we computed the average activation 
level of each hidden unit for each letter-to-sound correspondence in 
the training corpus. The result was 79 vectors with 80 components 
each, one vector for each letter-to-sound correspondence. A hierar- 
chical clustering technique was used to arrange the letter-to-sound 
vectors in groups based on a Euclidean metric in the 80-dimensional 
space of hidden units. The overall pattern, as shown in figure 4.8, is 
striking: The most important distinction is the complete separation of 
consonants and vowels. However, within these two groups the clus- 
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Figure 4.7 
Levels of activation in the layer of hidden units for a variety of words, all of which 
produce the same phoneme, /El, on the output. The network had 7 input groups and 
80 hidden units. The input string is shown on the left with the center letter empha- 
sized. The level of activity of each hidden unit is shown on the right, in two rows of 40 
units each. The area of the square is proportional to the activity level. Only a few units 
were highly activated, and most were inactive. 

tering has a different pattern. For the vowels the next most important 
variable is the letter, whereas consonants are clustered according to 
the similarity of their sounds. The same clustering procedure is re- 
peated for three networks starting from different random starting 
states. The patterns of weights are completely different, but the clus- 
tering analysis reveals the same hierarchies, with some differences in 
the details, for all three networks. 

4.3 The Spacing EljCect 

In section 4.2 we demonstrated that a small network was able to 
perform a difficult task in a way that was quite different from most 
previous methods used to solve the problem. Information about par- 
ticular words are stored in the network in a distributed fashion. New 
words can be added to the network, but they must be added in a way 
that is compatible with the previously stored information. As a conse- 

Figure 4.8 
Hierarchical clustering of hidden units for letter-to-sound correspondences. The vec- 
tors of average hidden unit activity for each correspondence, shown at the bottom of 
the binary tree, were sequentially grouped according to an agglomerative method 
using complete linkage (Everitt 1974). The horizontal scale gives the Euclidean distance 
between the farthest elements in two groups when a pair was merged. 

quence, the representation of information affects the training strategy 
for learning new words. In this section we compare the performance 
of humans on learning paired associates with the performance of 
the network on a similar task in the domain of pronunciation. More 
details about these simulations are presented by Rosenberg and 
Sejnowski (1986). 

Spaced versus Massed Practice 
In 1885 Ebbinghaus noted that {'with any considerable number of 
repetitions a suitable distribution of them over a space of time is 
decidedly more advantageous than the massing of them at a single 
time" (Ebbinghaus 1885, p. 89). Since then, the spacing effect has 
been found across a wide range of stimulus materials and tasks, se- 
mantic as well as perceptual and motor, and has even been found 
when the repetitions are across modality, or across languages if bilin- 
guals are employed as subjects [see Hintzman (1974) for a review]. 
The ubiquity of these results suggests that spacing reflects something 
of central importance in memory. However, despite over a hundred 
years of research, there is no adequate, or at least simple, explanation 
for the spacing effect. 
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Perhaps the most popular account of the spacing effect is the en- 
coding variability hypothesis, which assumes that stimuli are en- 
coded relative to the context, or environment, in which they occur 
and that the probability of recall is greater when the context at re- 
trieval is similar to the context at encoding. Another explanation is 
that the subject habituates to repeated presentations of the same item 
and therefore cannot process the later presentations as well as the 
first. Jacoby (1978) has suggested that less conscious "processing ef- 
fort" is made by the subjects to subsequent presentations when they 
are massed rather than spaced. Although each of these explanations 
can account for some of the experimental data, none can account for 
all experiments (Hintzman 1976). 

These theories attempt to explain spacing in terms of such concepts 
as encoding, habituation, and consolidation, which make little refer- 
ence to the actual form of the memory representation. Another ap- 
proach is to seek an explanation at the level of the representation: It 
may matter how the information is stored in the system. One way to 
explore this possibility is to construct explicit models that incorporate 
particular memory representations and learning mechanisms and to 
test them with the same experimental paradigms that have been used 
to study human memory. 

In this section we demonstrate that the spacing effect also occurs in 
NETtalk when the same experimental paradigm used to study the 
spacing effect on humans is applied to the network described in sec- 
tion 4.2. The window size was reduced from seven to five to speed 
training. There were 231 units and 10,346 connections in the version 
of the network used in the present experiments. 

Experimental Design 
The design was modeled after Glenburg's Experiment 1 (Glenberg 
1976). In this experiment subjects were presented with paired as- 
sociates, repeated twice at spacings of approximately 0, 1, 4, 8, 20, 
and 40 intervening items, and tested at retention intervals of ap- 
proximately 2, 8, 32, and 64 items. Each pair was composed of two 
four-letter common nouns "constructed to avoid common pre- 
experimental associations, rhymes, and orthographic similarities" 
(table 4.2). During testing only the stimulus word was presented, and 
the subject was to recall the associated response term. Glenberg's 
results are reproduced here as figure 4.9. A significant interaction is 
found between spacing (lag) and the retention interval. At short re- 
tention intervals massed repetitions lead to a higher probability of 
recall, whereas at long retention intervals distributed repetitions are 
advantageous. Glenberg also noted that retention at the 64-item re- 

Connectionist Models 165 

Table 4.2 
Examples of some training distractors and target items used in the 
experiments on spacing in NETtaka 
Letters Phonemes Stress 
Distractorsa 
file 
all 
second 
take 
together 
neck 
atmosphere 
Random target items 
fozepd 
scdyk 
bmyqd 
grtufh 
eqhxxu 
ncssvr 
wxsale 
djzxde 

fAl- 
cl- 
sEkxnd 
tek- 
txgED--R 
nEk- 
@tmxsf-Ir- 

WdicnK 
p-UdSp 
bzgTlz 
KCczOL 
ANT(vM 
zTSdWg 
RKpfll 
~ ~ Y - Y I  

kmfjqi WG&GN 1><102 
a. Training distradors were part of the original training corpus and were 
presented between training sessions on the target items and during the reten- 
tion interval. 

SPACING INTERVAL OTEMS) 

Figure 4.9 
The proportion of response terms recalled as a function of spacing interval and reten- 
tion interval. After Glenberg (1976). 
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tention interval is a monotonic and negatively accelerating function of 
spacing. 

As in Glenberg's experiment, we measured the retention of target 
stimuli repeated a certain number of times at various spacing inter- 
vals as a function of the retention interval. If NETtalk exhibits the 
spacing effect, then long-term retention of these items should be 
better when a large number of other items intervene between succes- 
sive repeats of the target (distributed practice). Conversely short-term 
retention of the target items should be better when fewer items are 
presented between repeats (massed practice). 

Pre-Experimental Training The network was first trained on the 1,000 
most common English words taken from the Brown corpus. The net- 
work cycled through this 1,000-word corpus eleven times. The per- 
formance of the network at this point in training, as determined by 
the percentage of the correct phonemes' "guessed," was 85% and 
could have been improved with further practice. The weight values of 
the network were stored following this initial training and served as a 
common starting point for all of the subsequent experimental trials. 

Target Stimuli In order to force new learning to take place, random 
character strings of length six were employed as target stimuli. Thus 
there was no orderly relation between the cue and the response. 
Whatever performance level NETtalk was able to reach on these items 
could not have been due to the utilization of rules acquired either 
before or after the study. Twenty six-letter cues were generated by 
choosing six letters at random (with replacement) out of the twenty- 
six letters of the English alphabet. Likewise, the response terms asso- 
ciated with each of these cues were randomly generated phoneme 
and stress strings, also six characters in length. There were fifty-three 
possible phonemes and five possible stress characters. In generating 
the target stimuli, two "phonemes," the space between words (-) and 
the period (.), were not possible choices. The frequency of occurrence 
of the characters in natural language were not taken into account in 
this selection process. Some of these items and several items from 
the training corpus are presented in table 4.2. 

Procedure The 20 target items were tested individually on separate 
trials. A trial consisted of, first, reading in the pre-experimental 
weights, presentihg a target item 2, 10, or 20 times, and then measur- 
ing the retention of the target as it was interfered with by subsequent 
learning. Furthermore, each target was presented at each of 6 spacing 
intervals, with either 0 (massed), 1, 4, 8, 20, or 40 (distributed) inter- 

vening items. Thus 18 trials were devoted to each target item (3 repe- 
tition groups x 6 spacing intervals). Between successive repeats of 
the target, words were presented from the original training corpus. 
Following the last repeat, the training corpus was again presented, 
and retention of the response terms of the target item was assessed 
after every item by presenting the cue term and measuring the mean 
squared difference between the output of the network and the correct 
response. The error defined in equation (4.12) was used to define the 
response accuracy for the word: 

f Errorl 
Accuracy = 1 - 

L ' (4.17) 

where L is the number of letters in the word. Note that this measure 
of accuracy is more sensitive than the performance accuracy given 
earlier, which measured only the correct choices made by the net- 
work. Learning was turned off (achieved by setting the learning rate 
to 0) for these tests, so that no changes were made to the strengths of 
the connections in the network. 

Results Accuracy, as defined by equation (4.17) was averaged over 
the 20 target items and plotted as a function of spacing interval for 
each repetition group at retention intervals of 2,8,32, and 64 in figure 
4.10, following Glenberg (1976). A significant spacing effect was ob- 
served in NETtalk: Retention of nonwords after a 64-item retention 
interval was significantly better when presented at the longer spac- 
ings (distributed presentation) than at the shorter spacings. In addi- 
tion, a significant advantage for massed presentations was found for 
short-term retention of the items. Although stimulus materials, re- 
sponse measures, and procedure differ sufficiehtly to make direct 
comparison impossible, the overall pattern of these results resembles 
that found by Glenberg (19761) in an experiment using human sub- 
jects. We obtained our results without making additional assump- 
tions or including additional mechanisms such as consolidation, 
rehearsal, or attention. Nor were explicit assumptions made about a 
continuously changing context other than the context implicitly pro- 
vided by the network. 

Recency effects, similar to those reported here, are common in the 
literature and have been reported in many spacing experiments [for 
example, Peterson et al. (1963) and Sperber (1974)l. This short-term 
advantage for massed practice is commonly discussed with reference 
to a limited-capacity memory buffer. The present experiments indi- 
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, b. ow, I 

SPACING IhTERVAL (ITEMS) SPACING lNfERVAL (TTEMS) 

0 ,  . I j, M 

SPACISG ISTERVAL (ITEMS) 

Figure 4.10 
Mean response accuracy plotted as a function of spacing interval at 2-, &, 32-, and 6 4  
item retention intervals for the (a) 2, (b) 10, and (c) 20 repetition groups. 

cate that some of the effects for which such a mechanism is designed 
to account can be produced without a separate buffer. 

A Possible Explanation for the Spacing Effect 
Why should NETtalk exhibit these characteristics? The answer de- 
pends on the learning procedure and the way in which the resulting 
knowledge is represented in the network. 

The learning algorithm alters the weights by a small amount after 
each training word in a direction that minimizes the average error. 
A network with n weights can be considered a point in the n- 
dimensional Euclidean space of weights, and this point moves 
through the space during learning along a trajectory that brings it 
closer to a point in the space where the error over the entire training 
corpus is minimal. After reaching such a point, the network is stable; 
that is, further training on the same vocabulary will not change the 
weights. If a new word that is irregular is introduced, then the net- 
work must accommodate the new word in such a way that the pro- 
nunciations of the old words are not altered. Our hypothesis is that 
distributing practice leads to a more stable position in the weight 
space upon the re-presentation of the training corpus. 

For the sake of simplicity, consider only three connections from 
the entire network, so that they can be represented in a three- 
dimensional space (see figure 4.11). Suppose further that, as in the 
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Weight Space Projection 
w, 

Figure 4.11 
Idealized trajectories in weight space during learning for massed (dark) and distributed 
(light) conditions. Point A is a set of weights that is optimum for the pre-experimental 
training corpus (the assumed starting point for all experimental trials); point B is an 
optimum for the target item, and point C is an optimum for both the target and the 
training corpus. See text for explanation. 

present simulations, this network has been trained on a large pre- 
experimental training corpus and that it has reached a point where 
the error is at a local minimum for these items (point A). Now a new 
and unusual target item is presented in either a massed or spaced 
condition to the network. If the target is presented several times back 
to back, as in the massed condition, minimizing the error following 
each presentation leads the weights down a path toward a nearby 
point that is optimal for this target item, perhaps even reaching it 
(point B). But because this trajectory will have taken the network 
some distance away from the starting point, this new position is not 
likely to be stable to the re-presentation of the training corpus, and so 
the massed learning of the new item will be lost quickly. 

Assuming, however, that there is a point that is optimal for both 
the training corpus and the target item (point C in figure 4.11), alter- 
nating presentations of the target with items from the training set is 
one way of moving closer to this highly stable point. On the first 
presentation of the target iteni the error gradient for that item is 
estimated and the error is reduced by adjusting the weights in the 
direction of the steepest descent (to position 1). So far, this procedure 
has been identical with that for the massed condition, so the network 
is at the same point in weight space. Now, however, instead of pre- 
senting the target again, an item from the original training corpus is 
presented. Again the weights are adjusted to minimize the error on 
the item (to position 2), only this time the direction of movement is 
more likely to be toward point A than point B, because A is a global 
minimum for the training corpus. Presenting the target again will 
cause a movement back toward B (to position 3), and so on. We see 
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that distributing practice causes the network to weave through the 
weight space, allowing it to search for a point that is good for both the 
training corpus and the target item. The network therefore has a 
better chance of finding the overall optimal position (point C) than it 
would if practice were massed, and its encoding of the target item 
will consequently be more able to withstand interference resulting 
from further training on both types of material. 

Discussion 
In all the experiments we updated the weights after every word. 
Another way to learn new items is to update the weight values less 
frequently. Instead of learning in small increments, one could also 
collect data over many trials and then take one big jump. Although 
this procedure (within its resolution) overcomes the problems associ- 
ated with presentation order (such as the spacing effect), it may be 
hazardous because new information is integrated at a slow rate. Both 
of these time scales for modification might be used in the nervous 
system. Hinton (personal communication) has suggested that each 
synapse could have one component that changes its value rapidly 
and another component that changes more gradually. Fast learning 
could be done with the fast component of the weight, and only an 
average of the fast synaptic changes could be committed to long-term 
storage. This allows new regions of the weight space to be tempo- 
rarily explored without "forgetting" the previous knowledge. 

The explanation of the spacing effect that we offer here is not meant 
as an alternative tb previous suggestions; it is a different type of 
explanation, relying as it does on the underlying structure of the 
representations. The decline in learning rate as local optima are ap- 
proached is reminiscent of the process of habituation: Less is effec- 
tively learned each time the item is repeated. Other aspects of our 
model bear a resemblance to encoding variability to the extent that 
items are encoded relative to the current state of the network, which 
is in a state of continual flux. And if we identify Jacoby's processing 
effort with the degree of change required to construct a distributed 
representation, then our simulations can be considered support for 
this proposal as well. Nevertheless, although these concepts of 
habituation, encoding variability, and processing effort may be rein- 
terpreted within the framework of connectionist models such as ours, 
they are at a different level of explanation. 

Our results are limited to a particular network architecture in a 
particular domain. To what extent is this conclusion dependent on 
the details of our model? If the spacing effect is a direct consequence 
of incremental learning in memory systems that use distributed rep- 
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resentations, as we suspect, then the same effects of massed and 
distributed learning should occur in other task domains and with 
other network architectures that also have learning algorithms with 
distributed representations, such as Boltzmann machines (Hinton 
and Sejnowski, 1983; Ackley et al. 1985). We predict as well that the 
same general principles may underlie the spacing effect in human 
learning. 

4.4 Conclusions 

NETtalk is an illustration in miniature of many aspects of learning. 
First, the network starts with considerable "innate" knowledge of 
input and output representations chosen by the experimenters and 
with no knowledge specific for English-the network could have 
been trained on any language with the same set of letters and 
phonemes. Second, the network acquires its competence through 
practice, goes through several distinct stages, and reaches a sig- 
nificant level of performance. Finally, the information is distributed in 
the network such that no single unit or link is essential. As a conse- 
quence, the network is fault tolerant and degrades gracefully with 
increasing damage. Moreover, the network recovers from damage 
much more quickly than it takes to learn initially. In addition to these 
features, the effect of temporal ordering during training on new 
words is remarkably similar to that in humans. 

Despite these similarities with human learning and memory, NET- 
talk is too simple to serve as a good model for the acquisition of 
reading skills in humans. The network attempts to accomplish in one 
stage what occurs in two stages of human development. Children 
learn to talk first, and only after representations for words and their 
meanings are well developed do they learn to read. It is also likely 
that we have access to articulatory representations for whole words in 
addition to our ability to use letter-to-sound correspondences, but 
there are no word-level represkntations in the network. It is perhaps 
surprising that the network is capable of reaching a significant level of 
performance using a window of only seven letters. This approach 
would have to be generalized to account for prosodic features in 
connected text, and a human level of performance would require the 
integration of information from several words at once. 

NETtalk can be used as a research tool to explore many aspects of 
network coding, scaling, and training in a domain that is far from 
trivial. Those aspects of the network's performance that are similar to 
human performance are good candidates for general properties of 
network models; more progress may be made by studying these as- 
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pects in the small test laboratory that NETtalk affords. Our explora- 
tion of the spacing effect is an example of how a general property of 
human memory can be studied in a much simpler model system. 
When NETtalk deviates from human performance, there is good rea- 
son to believe that a more detailed account of brain circuitry may be 
necessary. 

After training many networks, we concluded that many different 
sets of weights give about equally good performance. Although it was 
possible to understand the function of some hidden units, it was not 
possibIe to identify units in different networks that have the same 
function. However, the activity patterns in the hidden units could be 
interpreted in an interesting way. Patterns of activity in groups of 
hidden units could be identified in different networks that serve the 
same function, such as distinguishing vowels from consonants. This 
suggests that the detailed synaptic connectivity between neurons in 
the cerebral cortex may not be helpful in revealing the functional 
properties of a neural network. It is not at the level of the synapse or 
the neuron that one should expect to find invariant properties of a 
network but at the level of functional groupings of cells. Techniques 
that are developed to uncover these groupings in model neural net- 
works could be of value in uncovering similar cell assemblies in real 
neural networks. 
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